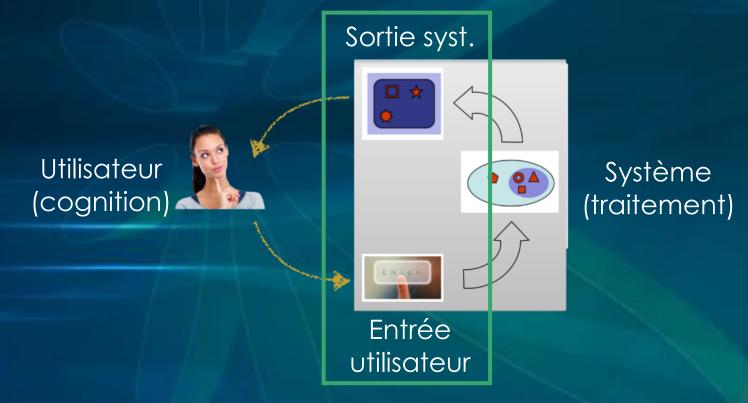
L'interaction en réalité virtuelle

YOREN GAFFARY


Sommaire

- 1. Interaction
- 2. Interfaces
- 3. 4 tâches en réalité virtuelle
- 4. Le futur de l'interaction en RV

Interaction

Concept

Communication entre un système interactif et son utilisateur humain

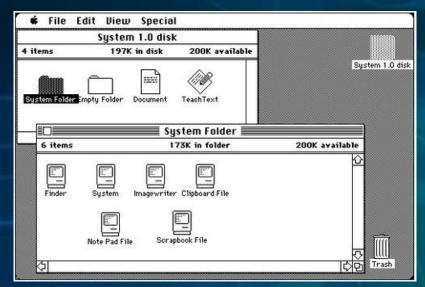
Réalité Virtuelle → dispositifs matériels et logiciels spécifiques

Tâche/interaction

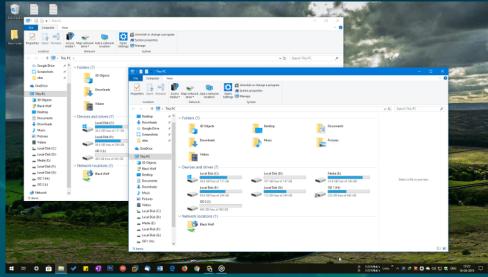
<u>Tâche</u>: Fonction que l'utilisateur exécute à un moment donné

Interaction: ensemble des actions/réactions entre l'homme et l'ordinateur par l'intermédiaire d'interfaces matérielles [Sternberger, 2006]

L'interaction en RV


Environnement virtuel: modèle 3D réel ou imaginaire qu'on peut visualiser et avec lequel on peut interagir en temps réel [Hachet, 2003]

Appliqué à la RV : méthode permettant d'effectuer une tâche d'interaction dans un **environnement virtuel** [Hachet, 2003]


Interface utilisateur traditionnelle

Paradigme WIMP [Wilberts, 1980]

Windows, Icons, Menus, Pointing device

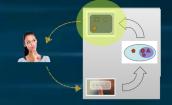
Macintosh (1984)

Windows 10 (2015)

Différences majeures 2D/3D

- Pas de fenêtres/menus/icones
- Interfaces matérielles différentes
- Plusieurs degrés de libertés

Interfaces


L'interface homme-machine : matérielle

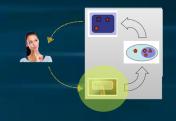
Interface permettant à un utilisateur d'interagir avec une machine.

- Interfaces d'entrée courantes : clavier/souris, écran tactile
- Interfaces de sortie : écran, casque
- Interfaces mixtes : manette de jeu

Les interfaces de sortie de la RV

Deux grands types de dispositifs

- Casques RV : écrans, haut-parleurs/manettes, « peu » onéreux
- Salles immersives : projections, utilisateur visible, « très » onéreuses


HTC Vive (2016)

Salle immersive

Les interfaces d'entrée de la RV

Deux interfaces très utilisées à ce jour

Casques/Lunettes

Suivi de la position/rotation de la tête

Lenovo Explorer

Lunettes/marqueurs

Manettes

- Suivi de la position/rotation des mains
- Boutons/gâchettes

Oculus Rift S

Valve Index

Manettes

- Boutons: A, B, X, Y (bool)
- Un axe: Trigger, grip ([0, 1])
- Deux axes : joystick ([0, 1], [0, 1])

<!> On peut faire la RV sans manette!

Les interfaces d'entrée de la RV

Capturer les mouvements de l'utilisateur

Dispositifs intrusifs

- Gants
- EMG

Dispositifs non intrusifs

- Caméra de profondeur
- Caméra stéréo IR

Manus Prime (2020)

Myo (2015)

Kinect (2010)

Leap Motion (2013)

L'Ul en science fiction : mythe ou réalité?

Basée principalement sur des informations holographiques, gestuelle

Minority Report [2002]

Iron Man [2008]

Pacific Rim [2013]

... Mais probablement pas le futur : sensory overload, fatigue...

L'UI en environnement virtuel

Comment donner des informations à l'utilisateur en RV ? Exemple de la barre de vie dans les jeux

Panel (Doom, 1993)

Superposée (Dying Light, 2015)

L'UI en environnement virtuel

L'interface idéale : intégrée à l'environnement pour plus d'immersion

Symbolique

Dead Space (2008)

En résumé

L'interaction en environnement virtuel immersif pour accomplir des tâches doit être similaire à celle qu'on expérimente dans la vie réelle

4 tâches en réalité virtuelle [Sternberger, 2006]

- Sélection
- Manipulation
- Navigation
- Contrôle d'application

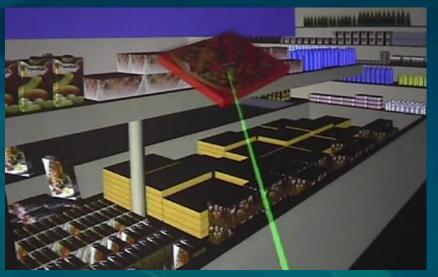
1-2. Sélection et Manipulation

Sélection

Désignation d'un objet/ensemble d'objets afin d'accomplir un objectif donné au sein de l'environnement virtuel [Bowman et al., 2005]

Questions de l'utilisateur :

- Comment je parcours les objets ?
- Comment je sélectionne un objet ?
- Comment le système valide ma sélection ?


Sélection

L'utilisateur touche l'objet et valide la saisie par la pression d'un bouton.

Convergence sensorielle : valider la sélection par un retour sensoriel

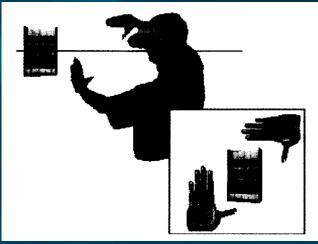
Proxémique

À distance

Manipulation

Processus qui consiste à modifier les propriétés d'un objet/ensemble d'objets appartenant à l'univers virtuel : position, orientation, couleur, échelle...

Deux types de manipulations :


- Directe (l'utilisateur interagit sur l'objet)
- Indirecte (l'utilisateur interagit avec une UI)

Méthodes alternatives

Mains encadrantes

Regard

Bras extensible

[Pierce et al., 1997]

[Achibet et al., 2015]

Navigation

Capacité de bouger à l'intérieur d'une scène virtuelle [Rheingold, 1991]

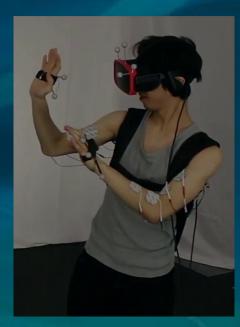
L'utilisateur se déplace dans l'environnement virtuel :

- Déplacement partiel (tête) ou entier (déplacement du corps)
- Destination connue (guidée) ou non (exploration)
- Distance courte (un mètre) ou longue (une autre planète)

Navigation

Questions de l'utilisateur :

- D'où je pars ?
- Où je vais ?
- Comment j'y vais ?


4 grands systèmes de navigation

Marche

Déplacement continu

Push/pull

Téléportation

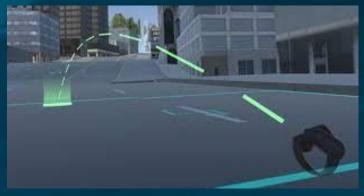
Naturel

Navigation

Caractérisation d'un paradigme de navigation [Bowman et al., 1997] :

- Vitesse
- Précision
- Conscience spatiale
- Facilité
- Présence
- Confort

Marche


- Vitesse : Faible (attention à l'environnement réel !)
- Précision : La même que la marche réelle
- Conscience spatiale : Déplacement naturel
- Facilité : Maximale
- Présence : Maximale
- Confort : Bon (si simulation fluide)

Mouvement continu

- Vitesse: Distance à la position neutre
- Précision : Direction selon la direction de la tête/joystick secondaire
- Conscience spatiale: Mouvement continue (si joystick pour rotation)
- Facilité: Intuitive pour les habitués de la 3D (si tête pour rotation)
- Présence : Bonne
- Confort : Moyenne (cybersickness)

Téléportation libre/ancrée

- Vitesse: Infinie
- Précision : Fonction de la distance (si libre)
- Conscience spatiale: Mauvaise
- Facilité: Temps de sélection
- Présence : Mauvaise
- Confort : Correct (Attention à la transition)

Libre

En bref

Pas de solution miracle!

Méthodes alternatives

- Montée des genoux
- Direction/distances des mains
- Téléportation minimap/3D (métaphore « monde en miniature »)

4. Contrôle d'application

Contraintes de la RV

- Différence entre 3D et stéréoscopie
- Angle de vue limité

Zones d'attention et de lecture

Présentation de texte

Beat Saber (2018)

Recommandations

- Le texte ne doit pas être lu en biais
- Distance: 2 à 5 m

HUD en main

Information

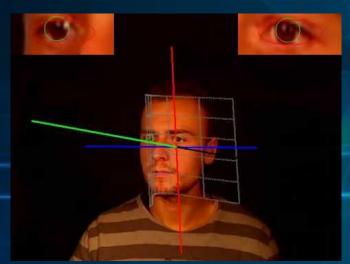
Sélection

Menus

Menu radial

Menu TULIP [Bowman et al., 2001]

Besoin d'innover!


Exemple : saisie de texte

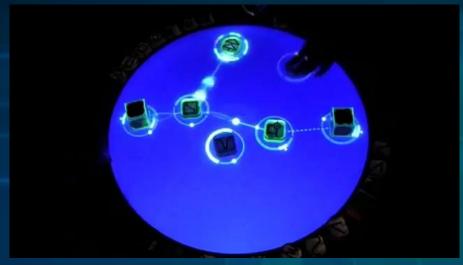
5. Le futur de l'interaction en RV

Interagir plus naturellement

Par le regard, les gestes, la voix.. la pensée ?

Deja (2009)

Suivi des mains (2020)



Si-Mohammed et al. (2018)

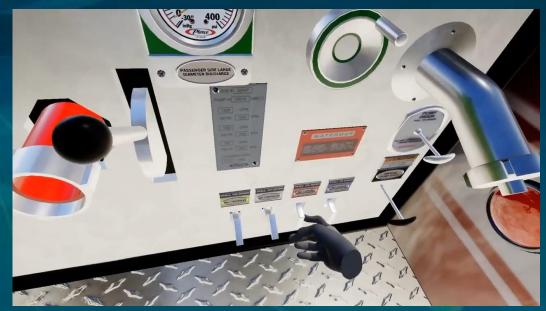
Interfaces tangibles

Interfaces homme-machine telles que l'utilisateur interagit avec un système numérique au moyen d'objets physiques (Ishii, 2008)

Capture du monde réel via capteurs, rendu via effecteurs

Reactable (2007)

Issartel et al. (2016)


Stimuler le toucher

Augmente l'expérience utilisateur

→ Immersion, présence physique/sociale, apprentissage

Go Touch VR

HaptX

Naviguer dans l'environnement

Aujourd'hui: manette, marche, téléportation

→ Vers une locomotion plus réaliste, limitant la cybercinétose

Virtuix Omni (2017)

Vailland et al. (2019)

L'interaction en réalité virtuelle

YOREN GAFFARY

